The logical statement $[ \sim \,( \sim \,P\, \vee \,q)\, \vee \,\left( {p\, \wedge \,r} \right)\, \wedge \,( \sim \,q\, \wedge \,r)]$ is equivalent to

  • [JEE MAIN 2019]
  • A

    $\left( {p\, \wedge \,r} \right)\, \wedge \, \sim \,q$

  • B

    $( \sim \,p\,\, \wedge  \sim \,q)\, \wedge \,r$

  • C

    $ \sim \,p\,\, \vee {\kern 1pt} \,r$

  • D

    $\left( {p\, \wedge  \sim q} \right) \wedge \,r\,$

Similar Questions

$( S 1)( p \Rightarrow q ) \vee( p \wedge(\sim q ))$ is a tautology $( S 2)((\sim p ) \Rightarrow(\sim q )) \wedge((\sim p ) \vee q )$ is a Contradiction. Then

  • [JEE MAIN 2023]

The statement $(\sim( p \Leftrightarrow \sim q )) \wedge q$ is :

  • [JEE MAIN 2022]

Consider the following two propositions:

$P_1: \sim( p \rightarrow \sim q )$

$P_2:( p \wedge \sim q ) \wedge((\sim p ) \vee q )$

If the proposition $p \rightarrow((\sim p ) \vee q )$ is evaluated as $FALSE$, then

  • [JEE MAIN 2022]

If $p \Rightarrow (q \vee r)$ is false, then the truth values of $p, q, r$ are respectively

Which one of the following is a tautology ?

  • [JEE MAIN 2020]